RG-CPDW 165

Boiler

I.E.I.

International Enamellers Institute

11/03/2010

1

The Request of I.E.I

The I.E.I. International Enamellers Institute, who represents all the **European Enamel Associations** applies RG-CPDW for the creation of a new sub group: "GLASSY MATERIALS"

11/03/2010

(Porcelain Enamel Linings)

The 5 reasons justifying this request

- Porcelain enamel linings are very important for hot water tanks
- Hot water tanks are already present in every house in all European countries
- To give a complete and correct information on a material with a prior knowledge of more than 40 years

The reasons for our request

- To give porcelain enamel the same visibility reserved to metallic, plastic and cementious materials
- Because p. e. linings are not fully reported in the most important documents of RG-CPDW despite of all the technical inputs given sofar to RG-CPDW

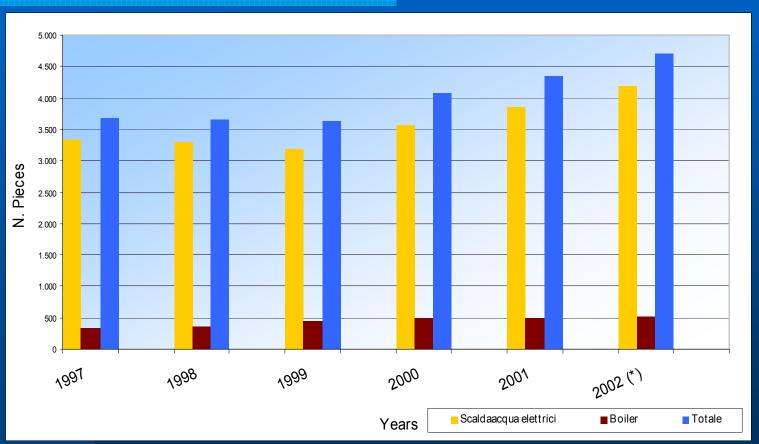
Industry Status of Art

2002 Hot Water Tank Market

China 12.000.000 ppa

USA

EU

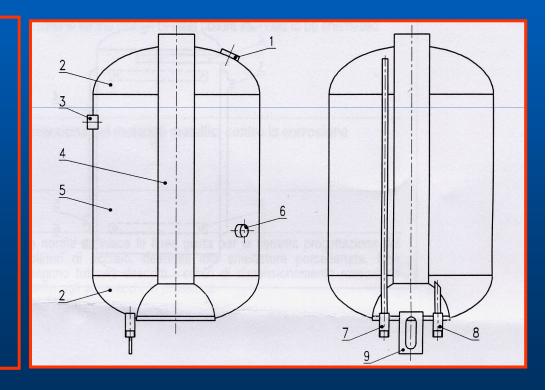

Italy

9.000.000 ppa

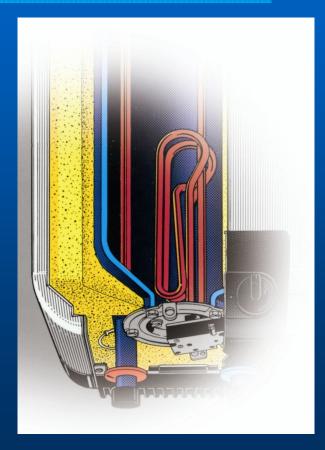
8.500.000 ppa

4.500.000 ppa

Italian Hot Water Tanks Market 1997 - 2001



The Product: Hot Water Tanks - Boilers


Gas Hot Water Tank

Key:

- 1. Anode sleeve coupling
- 2. Convex bottom
- 3. Suspending connection
- 4. Chimney pipe
- 5. Shell plate
- 6. Valve and thermostat sleeve
- 7. Outlet tube
- 8. Inlet tube
- 9. Enamelling hooke

The Product: Hot Water Tanks - Boilers

Technical Data Sheet

Working T °C	60 –	80
Max T°C	110	
Working Pressure	0 – 8	bar
Max W.Pressure	6 – 8	bar
Test Pressure	10,4	bar
S/V Ratio	~ 1	dm ⁻¹
P.E. Max Weight Loss	3.5	a/m^2

Boilers - Some Existing Standards & Laws

- DIN 4753 Part 3
- UNI 9905
- UNI 68.01.0682 (Draft)
- UNI EN 764
- Italian Decree
- French Decree (29 May 1997)

Hot Water Tank S/V Rate

Capacity (dm³)	Surface (dm²)	S/V (dm ⁻¹)
10	33	3.30
15	34	2.60
30	54	1.80
50	70	1.40
80	100	1.25
100	117	1.17

Vitreous Enamel - Definition

Vitreous Enamel

is a glazed surface finish designed for application to metallic surfaces for protective, functional and or decorative purposes.

It is produced by the application of powdered inorganic glass, dry or suspended in water on to the metal surface and its subsequent fusion bonding (450 – 950°C).

The fused coating exhibits cubic thermal expansion of between 150 and 450 x 10 $^{-7}$ °K⁻¹ in the temperature range 20 – 100°C, the actual value varying specifically with the type of subtrate and field of application.

Vitreous Enamel identification

- EINECS N. 266 047 6
- CAS N. 65997 18 4

Key:

EINECS = European Inventory Existing Commercial Substances
CAS = Chemical Abstract Substances

Vitreous Enamel Smelting

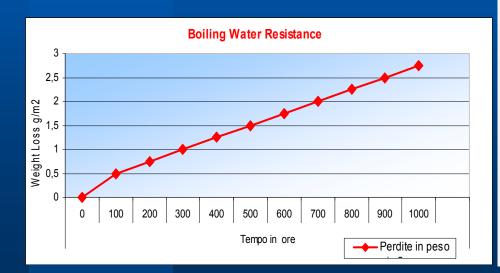
Smelting
Temperature
1.200 – 1.400 °C

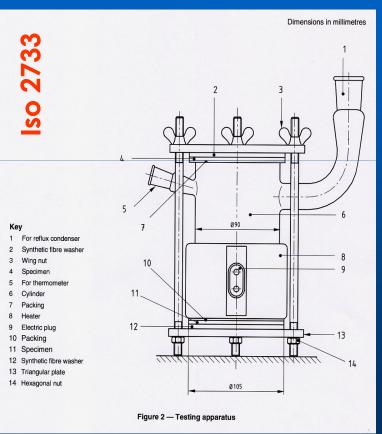
V.E. Composition List

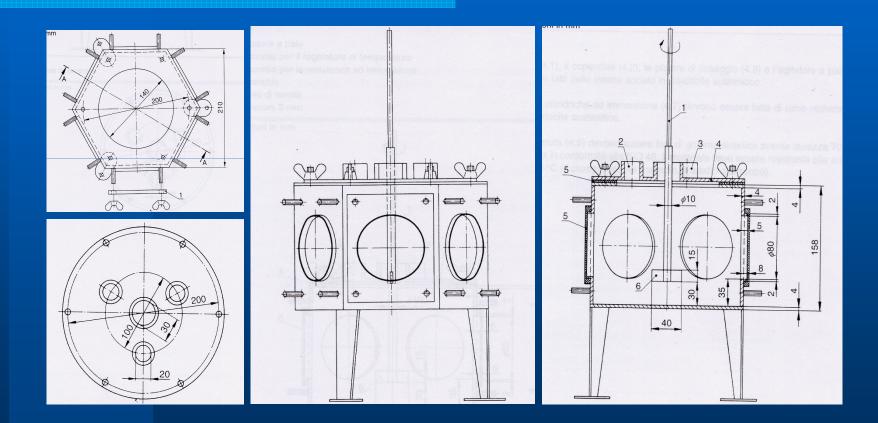
Subst.	Min.	Max
SiO ₂	25	80
B ₂ O ₃	0,1	20
Na ₂ O	0	30
K ₂ O	0	10
LiO ₂	0	10
CaO	0	10
ВаО	0	15
SrO	0	5

Subst.	Min.	Max
MgO	0	5
CeO ₂	0	15
ZnO	0	10
Al ₂ O ₃	0	5
CoO	0	5
NiO	0	5
CuO	0	3
MnO ₂	0	5

Subst.	Min.	Max
Fe ₂ O ₃	0	5
MoO ₃	0	5
P ₂ O ₅	0	5
SnO ₂	0	5
TiO ₂	0	10
ZrO ₂	0	30
F	0	10


The concentration ranges are giving the possible element oxides, which could be present in the different v. e. recipes for boilers. The lower limit "0" means that some elements could not be present in the enamel formulation, it is not a guarantee for their absence


Enamelling Process Flowchart


Water – Vitreous enamel Compatibility

Weight loss gr/m²

Apparatus according to ISO 4535

Boiler: Minimum Requirements

Re: DIN 4753/3:

- Enamel coating thickness: 0,15 0,50 mm
- Impact Resistance ISO 4532 No visible damage greater than 1,5 mm (diameter)
- Thermal Shock Resistance No damage Test according par. 5.4.1 DIN 4753/3
- *Resistance to warm water ISO 2744 Max. W.L. 3,5 g/m²
- *Acid Resistance ISO 2722 Min. Class A

Enamels for boilers – Ref. UNI Standards

- They do not contain Pb and Cd (UNI 9905)
- Resistance to hot water & vapours (UNI 6722)
- Acid Resistance (UNI 5717)
- Thermal shock resistance (UNI 9905)
- Adherence (UNI 8883)
- Hardness (EN 101)
- Abrasion Resistance (UNI 7233)
- □ Impact Resistance (UNI 9613)
- Continuity of the surface (UNI-ISO 8289)

Migration Process with respect to chemical water composition (Doc. Meyer 24.10.2000)

Type of material	Cementious	Organic	Metallic	Glassy
Chemical reaction with water	Yes	No	Yes	No
Type of process leading to deterioration of water quality	Reaction Dissolution Migration (only for organic additives)	Migration	Dissolution of corrosion products	Dissolution
Influence of chemical water characteristics within range of drinking water	Determining for inorganic part. No for organic additives	No	Determining	Low
Restrictions for use necessary with respect to chemical water composition	Yes	No	Yes	No
Effective water treatment possible to reduce quality deterioration	Yes	No	Limited	No

Ref. Meyer Document 24.10.2000

T.O.C.	n.a.	Vitreous enamel is free from organic products deposit, because fused at 830 – 860 °C			
COLOUR	n.a.	Vitreous enamel is an insoluble product in cold water and does not release components with colour sensitivity			
FLAVOUR	n.a.	See T.O.C.			
TURBIDITY	n.a.	See T.O.C.			
MICROB. GROWTH	n.a.	 No biofilm Very smooth and hard surface Bacteriological Research Hot water tank at working temperature over 60°C 			

CEN/TC 164 – WG 3 - The WG 3 Matrix

Test methods needed for glassy materials

Organo Tes						C	ther Te	ests
O/F	C/T	T.O.C.	PL	DWD	GCMS	Cldem	EMG	Cyto Tox.
N	N	N	N	Y(+)	N	N	N	N

Key:

O/F = Odour & Flavour

C/T = Colour & Turbidity

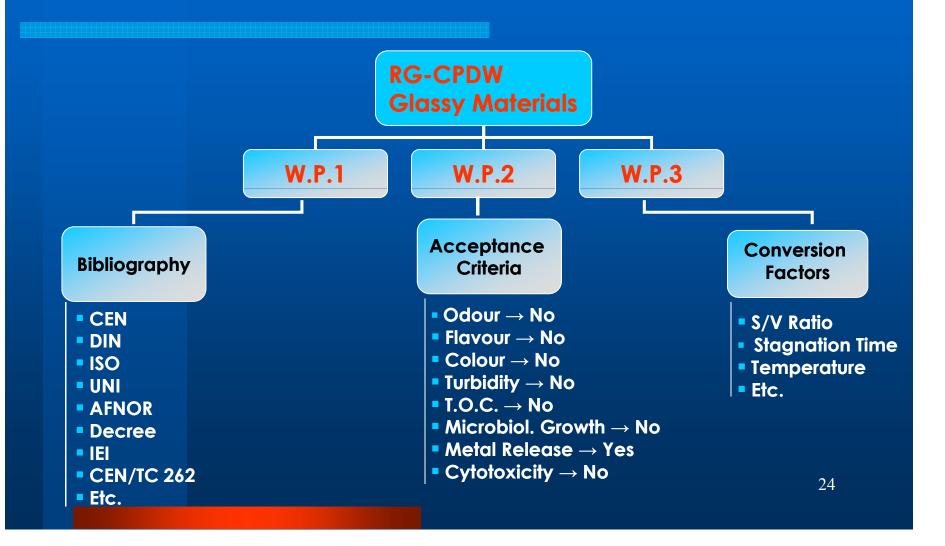
T.O.C. = Total Organic Carbon

PL = Positive List

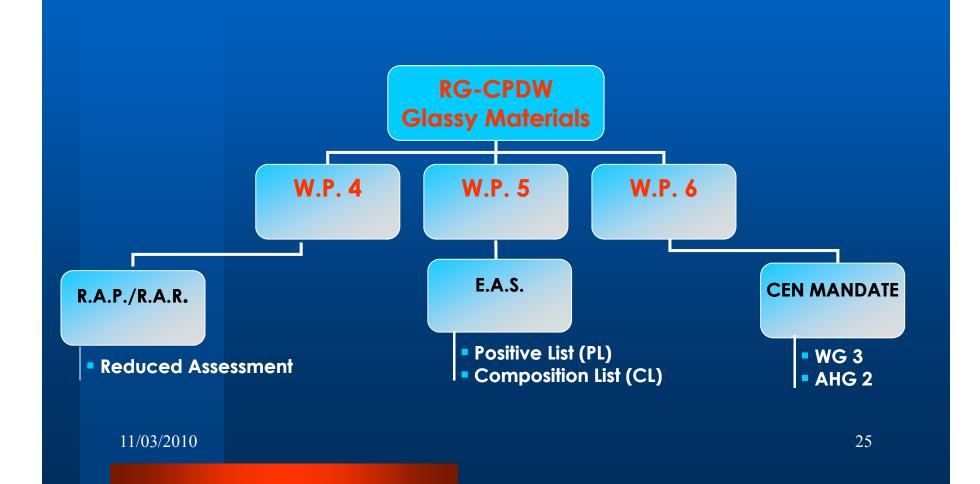
DWD = Drinking Water Directive

GCMS = GC-MS Testing

Cldem = Chlorine Demand


EMG = Enhancement Microbial Growth

Cyto Tox. = Cytotoxicity Testing


Y(+) = CEN Method needed – Standard or w. i. exists

N = CEN Method not needed

Work Breakdown Structure 1

Work Breakdown Structure 2

N.	Action	Who	When	What
1.	Bibliography	IEI/ISS	June '03	
2.	Acceptance criteria	ISS/I.E.I	*	Matrix
2.1.	Odour	ISS/I.E.I	*	Matrix
2.2.	Flavour	ISS/I.E.I	*	Matrix
2.3.	Colour	ISS/I.E.I	*	Matrix
2.4.	Turbidity	ISS/I.E.I	*	Matrix
2.5.	T.O.C.	ISS/I.E.I	*	Matrix
2.6.	Microbiological Growth	ISS/I.E.I	*	Matrix - RGCPDW 123
2.7.	Cytotoxicity	ISS/I.E.I	*	Matrix

Key: ISS = Istituto Superiore di Sanità / IEI = International Enamellers Institute / RG-CPDW = Regulators Group Construction Products in Contact with Drinking Water

^{*} Depending on contract formalisation timing

N.	Action	Who	When	What
2.8.	Metal Release			
2.8.1.	Composition List	IEI	Available	
2.8.2.	DWD Limits	EU	Available	Dir. 98/83 CE
2.8.3.	S/V Definition	ISS/IEI/RG	June '03	Discussion with Mr. Fielding
2.8.4.	Test Procedure Definition	CEN/IEI/RG	June '03	PrEN 12873-1
2.8.5.	Apparatus Definition	ISS/IEI/CEN	June '03	ISO 2733 & 4535 - Other Apparata
2.8.6.	Metal Release Test	ISS	Dec. '03	at Room Temp.
2.8.7.	Metal Release Test	ISS	Dec. '03	at 60 & 85 °C
2.8.8.	Metal Release Test	ISS	Dec. '03	With chlorinated water
2.8.9.	Metal Release Test	ISS	Dec. '03	With H ₂ O ₂ added water

11/03/2010

27

Action	Who	When	What
3. Conversion factors			
3.1. S/V	ISS/IEI/RG *	June '03	Extend range from 1 – 40 Prior knowledge Discussion with Mr. Fielding
3.2. Stagnation time	RG-CPDW	Ad hoc planning	Max. 12 h
3.3. Temperature	RG-CPDW	Ad hoc planning	T ₁ – Room T. cold water T ₂ 60°C – Warm water T ₃ 85°C – Hot water

ISS = Istituto Superiore di Sanità (Italian Regulator)

IEI = International Enamellers Institute

	Action	Who	When	What
4.	R.A.P./R.A.R			
4.1.	Reduced Assess.	RG-CPDW	Ad hoc planning	 When metal release test shows that P.E. limit is below DWD limits only composition List (CL) required Positive List (PL) to be encluded in E.A.S.

Action	Who	When	What
5. E.A.S.			
5.1. Composition List	IEI	March '03	To be discussed by RG-CPDW
5.2. Metal Release List Report	ISS	June '04	To be discussed by RG-CPDW
5.3. Positive List	RG-CPDW	Nov. '04	To be approved by RG-CPDWRecent Italian Decree

	Action	Who	When	What
6.	CEN Mandate			
6.1.	CEN	RG-CPDW		
6.2.	WG 3 Tests Working Programm	CEN/TC 164		

CEN Directive 98/83

Chemical Parameters - Part B

Parameters	Param.Values	Unity of meas.	Notes
Sb	5.0	μg/l	
В	1.0	mg/l	
Cd	5.0	μg/l	
Cr	50	μg/l	
Cu	2.0	mg/l	3
F-	1.50	mg/l	
Pb	10	μg/l	3 & 4
Ni	20	μg/l	3

CEN Directive 98/83

Chemical Parameters - Part C

Parameters	Param.Values	Unity of meas.	Notes
Al	200	μg/l	
Fe	200	μg/l	
Mn	50	μg/l	
Na	200	mg/l	