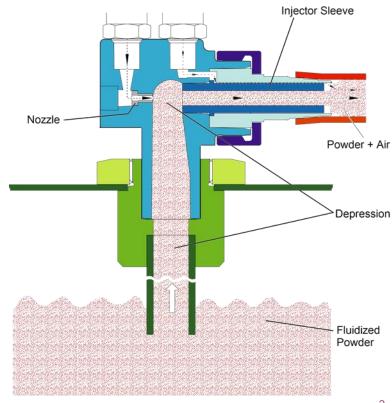
FLEXIBILITY, PRODUCTIVITY AND QUALITY IMPROVEMENTS IN ELECTROSTATIC POWDER ENAMELING

CLAUDIO MERENGO, GEMA

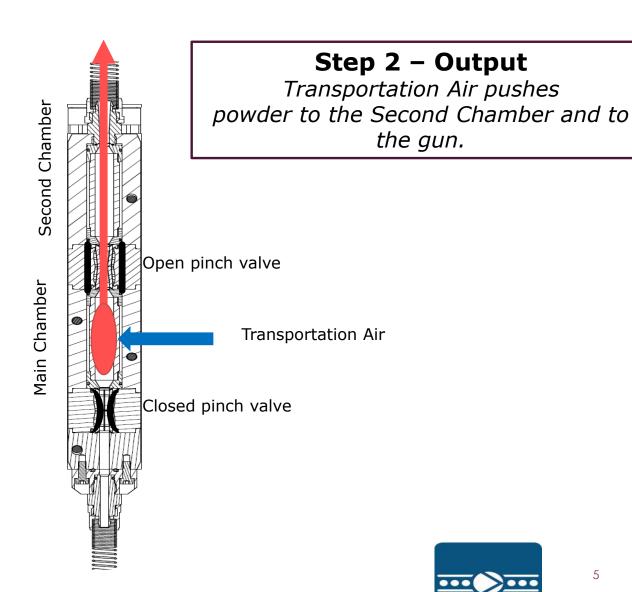


ELECTROSTATIC POWDER ENAMELING

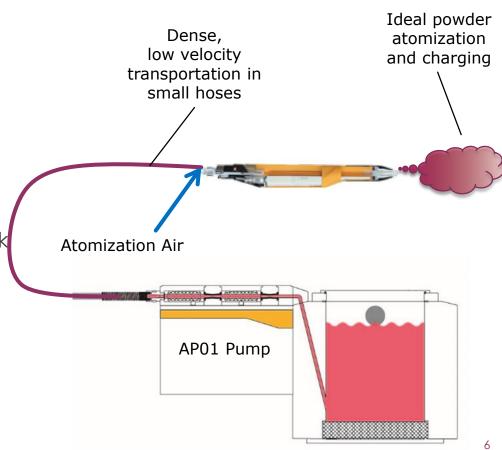
- Electrostatic Powder Enameling is a well known technology, widely used in many markets
- Some historical limitations have prevented its further development:
 - Powder conveying: irregular conveying, equipment wearing, maintenance costs
 - Powder charging: finishing defects (back-ionization)
 - Powder recovery: rigidity, reliability
- Today new technologies are available to overcome these limitations.

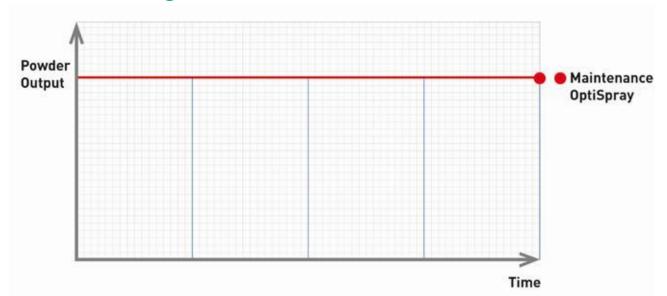
TRADITIONAL POWDER CONVEYING: VENTURI TECHNOLOGY

- Nozzle blows air into the injector sleeve
- This creates depression in the injector chamber that sucks powder from the fluidized hopper
- Powder + air is conveyed to the gun
- Powder progressively wears out the injector sleeve and hose:
 - as injector sleeve wears out, performance decreases!
- Large powder output requires more air through the injector:
 - possible application problems, lower transfer efficiency!

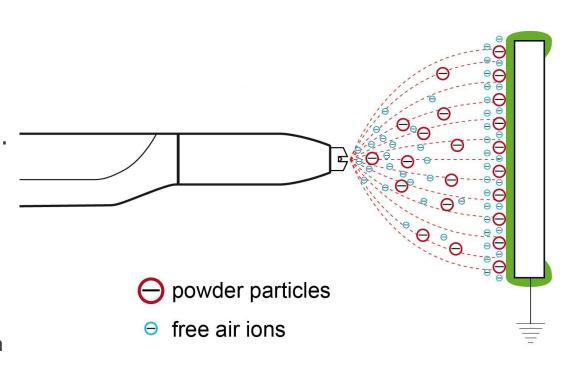

NEW POWDER CONVEYING OPPORTUNITIES: SMART INLINE TECHNOLOGY

The smooth powder delivery improves the application, which remains constant for a long time thanks to the wear-free technology.


Step 1 - Suction Vacuum sucks a powder packet Second Chamber into the Main Chamber. Transportation Air Closed pinch valve Main Chamber Vacuum Open pinch valve


SMART INLINE TECHNOLOGY

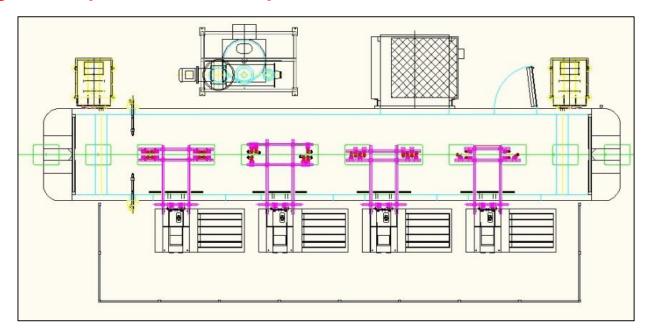
- Powder is conveyed from the pump to the gun with little compressed air.
- Powder velocity in the hoses is low, reducing wearing problems.
- Long powder hoses can be used without the need for more transport air.
- Optimal air amount for atomization is added just at the back of the gun.
- Advantages:
 - Reduced wear
 - More regular powder transport
 - Improved application quality


SMART INLINE TECHNOLOGY

- Powder output remains constant for a very long period of time.
- No wearing parts whose deterioration can decrease the powder output.
- Periodic maintenance is recommended for just a few components.
- Self-detection system identifies failures of key components.
- Advantages: constant coating results, reduced maintenance cost

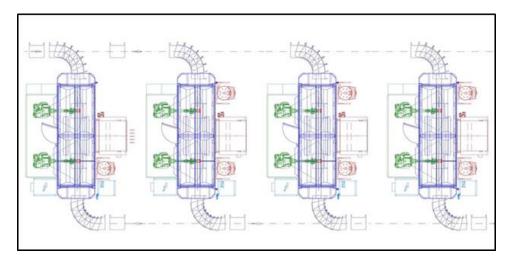
CHARGING TECHNOLOGY: TRADITIONAL CORONA CHARGING

- The high voltage electrode emits a large number of electrons which create charged ions.
- Only a few ions charge the powder particles.
- The accumulation of free ions on the coating surface can create the "orange peel" or "back-ionization".
- To avoid the problem the guns should charge the powder using less current, but
 - In traditional corona guns the electrostatic parameters regulation is not very precise.
 - The actual value of the charging current can vary within a significant range in comparison to the set value.
 - The parameters can be set only with a relatively large resolution (1 μA / 1 kV or more)


NEW CHARGING OPPORTUNITIES: PRECISE CURRENT CHARGING

- PCC is a new electronic technology that allows more precise electrostatic regulations.
- The electrostatic parameters are kept within a much smaller variation band in comparison to the set values
- As a consequence the parameters can be set with a smaller resolution (0.5 μA)
- Advantages:
 - Improved application quality
 - Reduction of reject rate
 - New markets opportunities

TRADITIONAL RECOVERY SYSTEM TECHNOLOGY: MASS PRODUCTION LAYOUTS


- System designed primarily for mass production
- Single booth for high line speed application with many guns, axes and application stations.
- Ideal for single model single powder high volumes production
- Limitations: rigidity, high set-up time, reliability

NEW RECOVERY SYSTEM OPPORTUNITIES: HIGHLY FLEXIBLE LAYOUTS AND SYSTEMS

- New Systems designed for higher flexibility
- Multiple small booths systems, installed in parallel, using flexible application and recovery systems, like robots.
- Easy to produce high variety of models with different powder types.

 Advantages: improved line flexibility, improved line availability, quicker reaction to demand variations

CONCLUSIONS

 The practical implementation of innovative technologies allows powder enamellers to overcome traditional limitations and difficulties and opens new application opportunities to the Powder Enameling Technology

Powder Conveying

Traditional problems:
Irregular Transport,
Wear and Maintenance

Solution: Smart Inline Technology

Advantages:
Reduced maintenance,
improved application quality

Powder Charging

Traditional problems:
Surface Finishing
(back-ionization, orange peel)

Solution: Precise Charge Control

Advantages: Improved application quality, new market opportunities

Powder Recovery

Traditional problems:
Rigidity
Reliability

Solution: Flexible Layouts

Advantages:
Improved flexibility, quicker reactions to changing needs